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Uniform Computation of the Error Function and 
Other Related Functions 

By F. Matta and A. Reichel 

Abstract. Uniform methods of computation, to any required degree of accuracy, for the 
error and other closely related functions are given. 

1. Introduction. In a paper by Chiarella and Reichel [1], the function 

w 
co 

eU2 d-u /\ 1/2 

Wo(x, t) = (42t)"2 2 + 2 e erfc w 

was expressed in the quadrature form 

Ii 2hw e~co -2h2 w___2 

W0 (X, t) =-(4)1/2 E2e2+ ~ + 
7e 

E(h), 
w(47rt) (47rt)f E nh2 W (rt)1/2( e2 r w/h) (4t t)' ( 

where w = (1 - ix)/2t"2, and the term involving E(h) is a small error term. The 
net size h was chosen sufficiently small so that the poles at z = i iw of the integrand of 

f e2 dz 
Jc (Z2 + W2)(1 - e-2riz/h 

from which the above quadrature formula was derived, were included in the contour 
c. This means that t was restricted to the range t > h2/47r2. 

In this paper, we extend the method to include the cases when h is such that the 
poles at z = -iw lie on and outside the contour c. 

The respective results are 

Wo(x, t) w4 + (4rt)1/ E n2h2 + W2 

+ P, if t> h2/4r2, 

(1) + 2 P, if t= h2/47r2, 

+ O, if t < h2/47r2 

(4h)"2 E(h), 
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2. Computation Formulae, The expressions for W0(x, t) given by (1) produce 
uniform methods for computing various related functions in mathematical physics. 
Formulae connecting W0(x, t) with such related functions have been given by Reichel 
[2]. 

(a) Voigt Functions. The function W0(x, t) can be expressed as 

Wo(X, t) = Uo(X I t) + i Vo(X, t), 
where 

cor e-(x- v) 24 t 

Uo(x, t)- (41rt)17/2 J 1 + y2 dy, 

I co 
e- (x- v) '/4 t 

Vo(x, t) = (47rt)1/2 J 1 + 2 y dy 

are Voigt functions. From (1), on separating real and imaginary parts, we obtain 

h- 2h ? e-nthS(1 + x2 + 4tn21s2) 

-\/Ir(l + x2) -vn= (1 - x2 + 4tn2h2)2 + 4X2 

+ p1, if t > h2/47r2, 

(2.1) + IP1, if t = h2/4r2 

+ O, if t < h2/47r2, 

E(h) 
4V-'rt ' 

hx 2hx e-n2h2(j + x2 - 4tn2h2) 

V/r(1 + x V (l n -x + 4tn h2)2+4x 

- Q1, if t > h2/472 

(2.2) - -Q,, if t= h /47r 
- 0, if t < h2/4r2, 

+ xE(h) 
4Vt/7r ' 

where 

P1 =-1) e2(z2/4t+/hVt-1/4t) [AC-BDj 

1( 2 
(X/24t+, h [Vt-114t) BC + AD 

A = cos x/2t, B = sin x/2t, 

C = e`/hVt - cos 7rx/h Vt, D = sin 7rx/h Vt. 

Suitable substitution and separation of terms in a formula given by Luke [3], 
[8] for the function erfc (az) yields the first two terms of Eqs. (2.1) and (2.2). However, 
the error term in Luke's formula is a combination of the last two terms of (2.1) and 
(2.2) and hence, in our context, depends on the variables x and t. Formulae (2.1) and 
(2.2) require less computation than the method of Salzer [4] and the equivalent 
method given by Abramowitz and Stegun [5]. 
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Many workers in optics and astrophysics use a Voigt function in the form 

H(a, u) f ( a2 - (l/a /7r) Uo(u/a, 1/4a 

so that 

ha 2ah e-n2h2(a2 + u2 + n2h2) 

Hr(a + u)-(a2 + nh) + 4a7; 

? P2, if a < r/h, 

(2.3) + 2P2, if a-7r/h, 

+ O, if a > 7r/h, 

a 
E(h). 

Similarly, if K(a, u) = (1 /a\/7r) V0(u/a, 1 /4a2) then 

hu 2uh e n2h2(a2 + U2 - n2h2) 

(a+ u) n (a2- a2 + n2_2)2 + 4a2u2 

-Q2, if a < r/h, 

(2.4) - 2Q2, if a = r/h, 

-0, if a > r/h, 

+ uE(h) 
2r 

where 

P2 - 2e~(U2+2ar/h-a2) [AC, - B Di] 
C,+ Di 

U2+e2ar/h-a] 
2 ]Al DP + BIC11 

L C, ? Di 1' 
A1 = cos 2au, B1 = sin 2au, 

C=e 
-2a 

-c/h o cos 2ur/h, D1 -sin 2ur/h. 

(b) Error Function of Complex Argument. The function 

erfcz = 2 
fV 

eu du = a - - , 

where z = x + iy, can be computed from 

(2.5) a = ev x2 [cos 2xyH(x, y) - sin 2xyK(x, y)], 

= e1 22[sin 2xyH(x, y) + cos 2xyK(x, y)]. 

Some workers use the function 

(2.6) w(z) = eZ2 erfc (-iz) = Im z > 0, 

e _ + 2e2 z Imz < 0, 
r z -t 
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which can be computed from 

(2.7) w(z) = H(y, x) + iK(y, x). 

A useful survey regarding the properties of this function, and computational 
methods, may be found in [3], [6], [7] and [8]. In references [3] and [8], Luke gives 
expressions for the complex error function in terms of the modified Bessel function of 
the second kind. For computational purposes, the expressions presented in the present 
paper require less computing time. 

(c) Dawson's Function of Complex Argument. The function 

rz 
w(z) = e- f e2 du = u(x, y) + iv(x, y) 

may be computed from 

u(x, Y) --\/ (sin 2xye ~22 + K(y, x)). 
(2.8) 

v(x, y)- A (cos 2xye 2-- H(y, x)). 2 

(d) Error Function of Real Argument. 

erfc x _ 2 f e-u du 

=-he~' [1 + 2X2 E nh 
+21+ 

(2.9) - 2/(e2ir--h - 1), if x < 7r/h. 

- i/(e27r-/h- 1), if x = r/h 

- 0, if x > 7r/h, 

- xexz E(h)/7r. 

(e) Dawson's Function of Real Argument. 

w(x) = e-xS eu du 

h xh l ezUI' 
2\/irx V/ -I n2h2 h 

(2.10) - 2 e- cot irx/h, if x <7r/h, 

- e cot rx/h, if x -r/h, 

-0, if x > ir/h, 

xE(h) 
+ 2_ r 



THE ERROR FUNCTION AND OTHER RELATED FUNCTIONS 343 

Note that with an error of smaller order than E(h), we can write 
co:>. 2 _-n 2h! 

(2.11) w(x) 2 
hx e - e 

2Vi7r n h2 - 

(f) The Fresnel Integrals. The integrals 

I2 vx 12VI 
c(x) = cos t2 dt, s(x) = f sin t2 dt 

may be computed from 

1(x 
_ 1 

O 
f [j/ / 

K\ 
7/ / 

c(x) = 2-2V/(rx) 2CO2 XLL(A2 ' - K(\2 '42jJ 

(2.12) -2sin , I) + 
2 

s(x) 2- 2V( rx) sin x H I\ X) - K 'X2) 

+ COS x[H(/ /) + K 

(g) The Rocket Flight Functions. The functions 

I cox e- rz2u/2u- 
1/2 du 

A( ) -r/ JO I + U2 

1 Ax e-=7rxZ/2ul/2 du 
B(x) - 7r/o 1+ u2 

can be computed from 

(2.13) A(x) = - [H( j2 V'i2) + K(2 2 ' 2)] 

B(x) = 
I 

[H(x -\ xV) - K(x \ xV)] 

3. Hints on Computation. (i) The authors [1] note that 

IE(h) | e` _2/h2 

which gives the following bounds on E(h): 

h 1 0.8 0.75 0.6 0.5 

E(h) 10 -4 10-6 10-7 lo-11 io-15 

If we take h = 2 the term containing E(h) in all the formulae may be neglected, with 
an error of the order 10'", for a large range of arguments. 

(ii) With h = -, the term 2P in Eq. (1), corresponding to the case when the poles 
at z = ?iw lie on the contour c, can be neglected with an error less than 1015. 
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Similarly, the term obtained from this 2P in each of the given expressions can be 
neglected with an error of 10i . 

(iii) Note also that the term P in Eq. (1) and the corresponding term in each of 
the other formulae can be neglected with an error less than 1015, if the exponent 
of the exponential is less than -34. 

(iv) In all formulae, except (2.11), about 12 terms are required in the summation 
to obtain accuracy of order 10-'5. The coefficients e''A2 and n2h2 can be computed and 
entered before the computation, for a given number of arguments, begins. To obtain 
more accuracy, h can be decreased and the number of terms in the summation in- 
creased. 

(v) The only function for which the given expression is difficult to compute as it 
stands is Dawson's function of real argument, Eqs. (2.10) and (2.11). In Eq. (2.10), 
we chose h = .55 and computed w(x) for all x except when In2h2 - xI < 0.1. For 
such values of x we chose h = .45, which avoided the zero in the denominator of 
the summation term. Of the two formulae (2.10) and (2.11), the first requires less 
computation. 
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